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Abstract
We are concerned with a certain class of Schlömilch series that arise
naturally in the study of diffraction problems when the scatterer is a semi-
infinite periodic structure. By combining new results derived from integral
representations and the Poisson summation formula with known identities, we
obtain expressions which enable the series to be computed accurately and
efficiently. Many of the technical details of the derivations are omitted;
they can, however, be obtained from Linton 2005 Schlömilch series that
arise in diffraction theory and their efficient computation Technical Report
Loughborough University available online at http://www-staff.lboro.ac.uk/∼
macml1/schlomilch-techreport.pdf.

PACS numbers: 02.30.Hq, 02.30.Lt

1. Introduction

A Schlömilch series is a series of the form
∑

j aj (x)Zn(jx), where Zn(·) is a Bessel function.
A general discussion of such series can be found in [2, chapter XIX] and they continue to be
the subject of research (see [3, 4] for example). We are concerned here with the series

S±
n (x, β) =

∞∑
j=1

Hn(jx) e±ijβx, x > 0, 0 � β � π/x, (1)

where Hn(·) ≡ H(1)
n (·) is a Hankel function of the first kind, and others which are related

to them. We will assume that n � 0; results for negative n can then be obtained from
S±

−n = (−1)nS±
n . Clearly S±

n (x, β) is a periodic function of β with period 2π/x, but

S±
n (x, 2π/x − β) = S∓

n (x, β) (2)

and so it suffices to consider only the range 0 � β � π/x. The sums S±
n can then be evaluated

for all β by first reducing β to the interval [0, 2π/x) using periodicity and then using (2) if
necessary.
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Related to S±
n are the series (often referred to as lattice sums)

σn =
∞∑

j=1

Hn(jx)[(−1)n eijβx + e−ijβx] = (−1)nS+
n + S−

n (3)

which arise naturally in diffraction problems where the scatterer is an infinite periodic structure.
In the form given above, they are totally unsuitable for numerical evaluation, but Twersky [5]
showed how these series can be transformed into new expressions which are amenable to
computation. An alternative approach, using recurrence relations, is described in [6].

When it comes to semi-infinite arrays, however, it is the series S±
n that are fundamental and

it is the objective of this paper to derive expressions which enable these sums to be computed
efficiently. It will be convenient to work also with the related series

J c
n =

∞∑
j=1

Jn(jx) cos jβx, Yc
n =

∞∑
j=1

Yn(jx) cos jβx, (4)

J s
n =

∞∑
j=1

Jn(jx) sin jβx, Ys
n =

∞∑
j=1

Yn(jx) sin jβx, (5)

from which S±
n can be constructed via

S±
n = J c

n ∓ Ys
n + i

(
Yc

n ± J s
n

)
. (6)

In the diffraction context, the series σn can be thought of as the effect at the origin due to
an infinite array of singularities periodically spaced along a line through the origin (spacing
governed by the parameter x) with a constant phase difference (governed by the parameter β).
The key to the efficient computation of σn (and of S±

n ) is to transform the representation into
a sum over ‘plane waves’ and in order to do this we introduce the quantities (often referred to
as scattering angles) ψm,m ∈ Z (Z is the set of all integers {0,±1,±2, . . .}), defined by

cos ψm = βm, βm = β + 2mπ/x. (7)

If |βm| < 1, we will say that m ∈ M and then 0 < ψm < π and sin ψm = √
1 − β2

m > 0.
If |βm| > 1, then we will say that m ∈ N , ψm is no longer real and the appropriate branch of
the arccos function is

arccos t =
{

i arccosh t t > 1
π − i arccosh (−t) t < −1,

(8)

with arccosh t = ln(t +
√

t2 − 1) for t > 1. In this case it is convenient to define qm > 0 by

cosh qm = |βm|, sinh qm =
√

β2
m − 1 (9)

and then

ψm =
{

iqm βm > 1
π − iqm βm < −1.

(10)

In either case sin ψm = i sinh qm. As |m| → ∞,

qm ∼ ln
4|m|π

x
+

βx

2πm
+ O(m−2) (11)

sinh qm ∼ 2|m|π
x

+ sgn(m)β + O(m−1). (12)
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Note that the set M is finite and

• if 0 � β < 1 then 0 ∈ M,
• if 1 < β � π/x (which can only happen if x < π ) then M is empty.

We will distinguish these cases by simply writing β < 1 and β > 1, respectively. Also note
that if m � 0 then βm � 0 and if m < 0 then βm < 0.

For large j the terms in the sum in (1) have the asymptotic form (ignoring multiplicative
factors) j−1/2 exp(ijx(1 ± β)). Hence, if βm = 1 (i.e., ψm = 0) for any m then S−

n does not
exist, whereas if βm = −1 (i.e., ψm = π ) for any m then S+

n does not exist. It follows that
if |βm| = 1 for any m, the series σn,J c

n ,J s
n ,Yc

n,Ys
n generally do not exist. It is, however,

possible for both S+
n and S−

n to be singular, but their singular parts cancel. Thus, for example,
with β = 0 and x = 2π (so that β−1 = −1 and β1 = 1) the series J s

n and Ys
n both exist

and are identically zero. Here we assume in what follows that |βm| �= 1 for any m (which
in particular rules out the case β = 1). In the final expressions for S+

n (S−
n ) the value when

βm = 1 (βm = −1) can be obtained by taking an appropriate limit.
Finally, we note that when β = 0 (which corresponds in diffraction problems to normally

incident waves) we have all of the following:

β−m = −βm, ψ−m = π − ψm, cos ψ−m = −cos ψm,

sin ψ−m = sin ψm, q−m = qm, ψ0 = π/2,

S+
n = S−

n , m ∈ M ⇔ −m ∈ M
(13)

and when β = π/x,

β−m = −βm−1, ψ−m = π − ψm−1, cos ψ−m = −cos ψm−1,

sin ψ−m = sin ψm−1, q−m = qm−1, S+
n = S−

n ,

m ∈ M ⇔ −m − 1 ∈ M.

(14)

The paper is organized as follows. In section 2 we will treat the case n = 0. This is
largely a case of gathering together formulae which already exist in the literature, though the
resulting expressions for S±

0 appear to be new. In section 3 we give Twersky’s expressions
for σn, n > 0, and then in section 4 we show how suitable expressions can be found for all
the series J c

n and J s
n . In section 5, we derive integral representations for S±

n which lead
to new expressions for the series defined in (4) and (5) and then in section 6 we combine
the most useful representations from the different methods together to present compact and
computationally efficient formulae for all the sums S±

n , n > 0. Finally, in section 7 we
make connections between the Schlömilch series under discussion here and so-called channel
multipoles.

We will make extensive use of the Poisson summation formula∑
m∈Z

∫ ∞

−∞
f (u) e−imu du = 2π

∑
m∈Z

f (2mπ) (15)

and use the convention that a dash on a summation sign indicates that the zeroth term is to be
omitted.

2. The case n = 0

We will begin by deriving an exponentially convergent representation for σ0, both for its
intrinsic interest and because it leads to a representation in terms of scattering angles which is
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a first step towards computationally efficient representations for S±
0 . The method follows that

described for a related sum in [7] and is implicit in [8]. Thus

σ0 =
∑
j∈Z

′
H0(|j |x) eijβx = − i

π

∑
j∈Z

′
eijβx

∫ ∞

0
exp

[
i|j |
2

(
t +

x2

t

)]
dt

t
, (16)

[9, 8.421(8)]. Next we make the substitution u = (t/2|j |)1/2 exp(−iπ/4) and deform the
resulting contour from zero to infinity along the line arg u = −π/4 into two parts: a part �1

which emerges from the origin along arg u = −π/4 and goes to the point a on the real axis
(a being an arbitrary positive parameter) and then a part �2 which goes from a to infinity along
the real axis.

Then

σ�2 = −2i

π

∑
j∈Z

′
eijβx

∫ ∞

a

e−j 2u2+x2/4u2 du

u
(17)

= − i

π

∑
j∈Z

′
eijβx

∞∑
n=0

1

n!

( x

2a

)2n

En+1(j
2a2) (18)

in terms of the exponential integral En(·). The second expression is obtained from the
first by expanding exp(x2/4u2) as a power series and then integrating term by term. Since
En(z) ∼ exp(−z)/z, it is clear that this representation for σ�2 is exponentially convergent in
j with terms decaying like exp(−j 2a2)/j 2 as |j | → ∞.

For σ�1 , we first note that

σ�1 = −2i

π

∑
j∈Z

eijβx

∫
�1

e−j 2u2+x2/4u2 du

u
− 1 − i

π
Ei(x2/4a2), (19)

in terms of the exponential integral Ei(·). For the first term in (19), we utilize the Poisson
summation formula which has the effect of transforming a series which is rapidly convergent
for large u into one which is rapidly convergent for small u. Thus

σ�1 = − 2i

π1/2

∑
m∈Z

∫ ∞ exp(−iπ/4)

1/a

e(1−β2
m)x2s2/4 ds − 1 − i

π
Ei(x2/4a2). (20)

If
(
1−β2

m

)
< 0, we can deform the contour back to the real axis and then the resulting integral

is just a complementary error function. If
(
1 − β2

m

)
> 0, we make the substitution s = it and

then the resulting contour can again be deformed back to the real axis. In either case we find
that

σ�1 = 2

x

∑
m∈Z

1

sin ψm

erfc
(
− ix

2a
sin ψm

)
− 1 − i

π
Ei(x2/4a2). (21)

The sum over m is exponentially convergent with terms decaying like exp(−m2π2/a2)/m2.
Clearly increasing a speeds up the convergence of σ�2 at the expense of σ�1 , while

decreasing a has the opposite effect. The rates of convergence of the two sums balance if we
take a = π1/2. In fact, series of this type serve as an excellent basis for numerical calculations
(provided efficient algorithms are available for the needed special functions) and the overall
computational effort is not particularly sensitive to the value of a used; see, for example,
[7, 8].

If we let a tend to zero then we simply recover the Hankel function series we started
with. If, however, we let a tend to infinity then σ�2 → 0 and it can be shown (using Mellin
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transforms as in [4, appendix B]) that

σ0 = S−
0 + S+

0 = −1 − 2i

π

(
C + ln

x

4π

)
+

2

x sin ψ0
+

∑
m∈Z

′
(

2

x sin ψm

+
i

π |m|
)

, (22)

where C ≈ 0.5772 is Euler’s constant. The real part of this is

J c
0 = −1

2
+

∑
m∈M

1

x sin ψm

(23)

which expresses the results of [9, 8.522(1), 8.524(1)] in compact form. If β > 1, we get
J c

0 = − 1
2 , and [9, 8.521(2)] is a special case of this with β = π/x. The imaginary part of

(22) is

Yc
0 = − 1

π

(
C + ln

x

4π

)
−

∑
m∈N

(
1

x sinh qm

− 1

2π |m|
)

+
∑
m∈M

′ 1

2π |m| (24)

provided β < 1. If β > 1, then

Yc
0 = − 1

π

(
C + ln

x

4π

)
− 1

x sinh q0
−

∑
m∈Z

′
(

1

x sinh qm

− 1

2π |m|
)

. (25)

These expressions are equivalent to [9, 8.522(3), 8.524(3)].
Next, following a method similar to that outlined in [10, appendix C],

S−
0 − S+

0 = 1

2

∑
j∈Z

(e−i|j |βx − ei|j |βx)H0(|j |x) = 1

2

∑
j∈Z

f (2jπ), (26)

where

f (u) = (e−i|u|βx/2π − ei|u|βx/2π )H0(|u|x/2π). (27)

The Poisson summation formula (15) then leads to

S−
0 − S+

0 = −2i

x

(∫ ∞

0
H0(v) sin vβ0 dv +

∞∑
m=1

∫ ∞

0
H0(v) (sin vβm + sin vβ−m) dv

)
(28)

= 4

πx

(
π
2 − ψ

sin ψ
+

∞∑
m=1

[ π
2 − ψm

sin ψm

+
π
2 − ψ−m

sin ψ−m

])
, (29)

where we have used [9, 6.671(7), (11)] which together imply that∫ ∞

0
H0(v) sin vβm dv = i(1 − 2ψm/π)

sin ψm

. (30)

Note that the sum
∑∞

m=1

∫ ∞
0 H0(v) sin vβm dv does not exist, but it follows from (11) and (12)

that we can write

S−
0 − S+

0 = 4

πx

(
π
2 − ψ0

sin ψ0
+

∑
m∈Z

′
[ π

2 − ψm

sin ψm

+
xi

4m
+

x

2mπ
ln

4|m|π
x

] )
. (31)

First we will assume that β < 1. Then we find that

J s
0 = −

∑
m∈M

′ 1

2mπ
+

∑
m∈N

[
sgn(m)

x sinh qm

− 1

2mπ

]
, (32)
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which is [9, 8.522(2)], and

Ys
0 = 2

πx

(
π
2 − ψ0

sin ψ0
+

∑
m∈M

′
[ π

2 − ψm

sin ψm

+
x

2mπ
ln

4|m|π
x

]

−
∑
m∈N

[
sgn(m)qm

sinh qm

− x

2mπ
ln

4|m|π
x

] )
. (33)

Using (13) we can show that when β = 0,J s
0 = Ys

0 = 0 as expected. If β > 1, we have

J s
0 = 1

x sinh q0
+

∑
m∈Z

′
[

sgn(m)

x sinh qm

− 1

2mπ

]
, (34)

which is [9, 8.524(2)], and

Ys
0 = 2

πx

(
−q0

sinh q0
−

∑
m∈Z

′
[

sgn(m)qm

sinh qm

− x

2mπ
ln

4|m|π
x

])
. (35)

From (22) and (31), we obtain

S+
0 = −1

2
− i

π

(
C + ln

x

4π

)
+

2ψ0/π

x sin ψ0

+
∑
m∈Z

′
(

2ψm/π

x sin ψm

+
i

2π |m| − i

2mπ
− 1

mπ2
ln

4|m|π
x

)
(36)

and

S−
0 = −1

2
− i

π

(
C + ln

x

4π

)
+

2(1 − ψ0/π)

x sin ψ0

+
∑
m∈Z

′
(

2(1 − ψm/π)

x sin ψm

+
i

2π |m| +
i

2mπ
+

1

mπ2
ln

4|m|π
x

)
, (37)

the former clearly showing the singularities when ψm = π and the latter when ψm = 0. The
terms in the series are O(m−2 ln |m|) for large |m|, but can be accelerated if necessary. Thus,
for example, we can write the sum over positive m in (36) as

∞∑
m=1

(
2ψm/π

x sin ψm

− 1

mπ2
ln

4mπ

x
− βx

2m2π3

[
1 − ln

4mπ

x

])

+
βx

2π3

(
π2

6

[
1 − ln

4π

x

]
+ ζ ′(2)

)
(38)

and so on, where ζ(·) is the Riemann zeta function and ζ ′(2) ≈ −0.937 548.
If ψp = 0 (βp = 1) for a particular p then S+

0 exists and its value is easily obtained from
(36) by replacing 2ψp/(πx sin ψp) by 2/πx. Similarly if ψp = π (βp = −1) for a particular
p then S−

0 exists and its value is easily obtained from (37) by replacing 2(1−ψp/π)/(x sin ψp)

by 2/πx.
When β = 0 or π/x various simplifications can be made to the above expressions for J c

n

etc because terms for positive and negative m combine. We will not list all these formulae
here, but simply note that in either case (36) and (37) simplify to

S+
0 = S−

0 = −1

2
− i

π

(
C + ln

x

4π

)
+

1

x sin ψ0
+

∞∑
m∈Z

′
(

1

x sin ψm

+
i

2π |m|
)

(39)
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the sum being divergent when ψm = 0 or π . When β = 0, we can simplify this further using
(13) to

S+
0 = S−

0 = −1

2
− i

π

(
C + ln

x

4π

)
+

1

x
+

∞∑
m=1

(
2

x sin ψm

+
i

mπ

)
, (40)

whereas when β = π/x, (14) shows that

S+
0 = S−

0 = −1

2
− i

π

(
C − 1

2
+ ln

x

4π

)
+

2

x sin ψ0
+

∞∑
m=1

(
2

x sin ψm

+
i

2mπ
+

i

2(m + 1)π

)
.

(41)

3. The sum σn for n > 0

Twersky [5] showed that, with the convention that sgn(0) = +1, we have, for n > 0,

σ2n = 2(−1)n
∑
m∈Z

e2in sgn(m)ψm

x sin ψm

+ 2iλ2n, (42)

σ2n−1 = 2(−1)ni
∑
m∈Z

ei(2n−1)sgn(m)ψm

x sin ψm

+ 2λ2n−1, (43)

where

λ2n = 1

2π

n∑
m=0

(−1)m22m(n + m − 1)!

(2m)!(n − m)!

(
2π

x

)2m

B2m(βx/2π), (44)

and

λ2n−1 = 1

π

n−1∑
m=0

(−1)m22m(n + m − 1)!

(2m + 1)!(n − m − 1)!

(
2π

x

)2m+1

B2m+1(βx/2π). (45)

Here Bm(·) is the Bernoulli polynomial (a finite sum; see [9, 9.620]). Note that B2m+1(0) = 0
for m > 0 and B1(0) = −1/2. Hence when β = 0, λ2n−1 = −1/x. Also B2m+1(1/2) = 0 and
so λ2n−1 = 0 when β = π/x.

The real and imaginary parts of (42) and (43) correspond to

J c
2n = (−1)n

∑
m∈M

cos 2nψm

x sin ψm

, (46)

Yc
2n = (−1)n

( ∑
m∈M

sgn(m)
sin 2nψm

x sin ψm

−
∑
m∈N

e−2nqm

x sinh qm

)
+ λ2n, (47)

J s
2n−1 = −(−1)n

∑
m∈M

cos(2n − 1)ψm

x sin ψm

, (48)

Ys
2n−1 = −(−1)n

( ∑
m∈M

sgn(m)
sin(2n − 1)ψm

x sin ψm

−
∑
m∈N

sgn(m)
e−(2n−1)qm

x sinh qm

)
+ λ2n−1. (49)

All the infinite summations can be easily accelerated if necessary; see [7].
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4. J c
n and J s

n

Computationally efficient series representations for J c
n and J s

n can be derived using methods
similar to those used to derive expression (29). Thus

2J c
n = −Jn(0) +

∑
j∈Z

Jn(|j |x) eijβx (50)

= −δn0 +
2

x

∑
m∈Z

∫ ∞

0
Jn(v) cos(vβm) dv, (51)

in which we have made use of the Poisson summation formula (15). Using [9, 6.671(2)], we
then get

J c
2n = −1

2
δn0 + (−1)n

∑
m∈M

cos 2nψm

x sin ψm

(52)

in agreement with (23) and (46), and

J c
2n−1 = −(−1)n

∑
m∈M

sin(2n − 1)ψm

x sin ψm

+ (−1)n
∑
m∈N

e−(2n−1)qm

x sinh qm

, (53)

which is new. Similarly, for n > 0,

2iJ s
n = 1

2

∑
j∈Z

Jn(|j |x)(ei|j |βx − e−i|j |βx) (54)

= i

x

∑
m∈Z

∫ ∞

0
Jn(v) (sin vβ−m + sin vβm) dv = 2i

x

∑
m∈Z

∫ ∞

0
Jn(v) sin vβm dv. (55)

Note that the last step is not possible if n = 0, since the sum
∑

m J0(v) sin vβm does not exist.
Using [9, 6.671(1)], we obtain

J s
2n−1 = −(−1)n

∑
m∈M

cos(2n − 1)ψm

x sin ψm

(56)

in agreement with (48), and

J s
2n = −(−1)n

∑
m∈M

sin 2nψm

x sin ψm

+ (−1)n
∑
m∈N

sgn(m)
e−2nqm

x sinh qm

, (57)

which is new.
Note that the method described in this section does not work for the sums Yc

n (n > 0) or
Ys

n (n > 1) because the singularity in Yn(x) as x → 0 is too strong and so the sums that arise
in place of (50) and (54) cannot sensibly be defined for j = 0.

5. Integral representations for S±
n

It is clear that when β = 0, S+
n = S−

n . However, when β = 0 the manipulation of the
integrals that appear below is complicated by the coalescence of a pole and a branch point.
For convenience we will assume in this section that β �= 0 and then treat the case β = 0 as
part of the following section by taking the appropriate limit.
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Expressions for S±
n can be obtained by inserting the integral representation

Hn(jx) = − i

π

∫ ∞

−∞

e−jxγ (z)

γ (z)
e−in arccos z dz, (58)

in which γ (z) is defined for real z by

γ (z) =
{

−i
√

1 − z2 |z| � 1√
z2 − 1 |z| > 1,

(59)

into (1) and using the generalized-function half-range summation formula (see [10])

∞∑
m=0

e±imu = 1

1 − e±iu
+ π

∑
m∈Z

δ(u + 2mπ).

Thus

S±
n = − i

π

∞∑
m=0

e±i(m+1)βx

∫ ∞

−∞

e−(m+1)xγ (z)

γ (z)
e−in arccos z dz (60)

= − i

π

∫ ∞

−∞
− e−in arccos z

γ (z)(exγ (z)∓iβx − 1)
dz − i e±iβx

∫ ∞

−∞

e−xγ (z)

γ (z)
e−in arccos z

×
∑
m∈Z

δ(βmx ± ixγ (z)) dz, (61)

the integrals being interpreted as principal-value integrals where necessary. Next we use the
result (see [11, p 14]) that if g(z) has real simple zeros zn, then

δ(g(z)) =
∑

n

δ(z − zn)

|g′(zn)| . (62)

In our case we have g±(z) = βmx ± ixγ (z) which has zeros when γ (z) = ±iβm. We find that

S±
n = − i

π

∫ ∞

−∞
− e−in arccos z

γ (z)(exγ (z)∓iβx − 1)
dz + 2(±i)n

∑
m∈M∓

cos nψm

x sin ψm

, (63)

in which we have denoted the subset of M for which m � 0 by M+ and that for which m < 0
by M−. Alternatively, we can write

S±
n = − i

π

∫ ∞

0



hn(z)

γ (z)(exγ (z)∓iβx − 1)
dz, (64)

where

hn(z) = e−in arccos z + (−1)n ein arccos z. (65)

The integral representations given above are equivalent to those derived, via a different method,
in [12]. In that paper the authors computed the contour integrals directly; here we follow a
different course.

We define

f+(z) = cos βx − e−xγ (z)

γ (z)(cosh xγ (z) − cos βx)
, f−(z) = i sin βx

γ (z)(cosh xγ (z) − cos βx)
(66)
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so that

S+
n + S−

n = − i

π

∫ ∞

0
− hn(z)f+(z) dz + 2in

∑
m∈M

(−sgn(m))n
cos nψm

x sin ψm

(67)

and

S+
n − S−

n = − i

π

∫ ∞

0
− hn(z)f−(z) dz + 2in

∑
m∈M

(−sgn(m))n+1 cos nψm

x sin ψm

. (68)

To obtain formulae for J c etc, we need to take the real and imaginary parts of the above
expressions. Note that for real z with |z| > 1, f+(z) is real whereas f−(z) is purely imaginary;
and for real z with |z| < 1, we have, with g(z) = (1 − z2)1/2,

f−(z) = − sin βx

g(z)(cos[xg(z)] − cos βx)
(69)

which is real, while

f+(z) = 1

g(z)

(
−i +

sin[xg(z)]

cos[xg(z)] − cos βx

)
. (70)

Note also that h2n(z) is real for all real z whereas h2n−1(z) is purely imaginary if |z| < 1 and
real if |z| > 1. It is desirable to get rid of the integrable singularities at z = 1 and this is easily
accomplished by splitting the integrals at z = 1 and making the change of variable z = cos u

or z = cosh u as appropriate. We then obtain

J c
2n = −1

2
δn0 + (−1)n

∑
m∈M

cos 2nψm

x sin ψm

, (71)

in agreement with (23) and (46),

Yc
2n = − 1

π

[∫ π/2

0
− sin(x sin u) cos 2nu

cos(x sin u) − cos βx
du +

∫ ∞

0

(cos βx − e−x sinh u) cosh(2n cosh u)

cosh(x sinh u) − cos βx
du

]
,

(72)

J c
2n−1 = − 1

π

∫ π/2

0
− sin(x sin u) sin(2n − 1)u

cos(x sin u) − cos βx
du, (73)

Yc
2n−1 = 1

π

[
1

2n − 1
−

∫ ∞

0

(cos βx − e−x sinh u) sinh(2n − 1)u

cosh(x sinh u) − cos βx
du

]

+ (−1)n
∑
m∈M

sgn(m)
cos(2n − 1)ψm

x sin ψm

, (74)

J s
2n = sin βx

π

∫ π/2

0
− cos 2nu

cos(x sin u) − cos βx
du, (75)

Ys
2n = (−1)n

∑
m∈M

sgn(m)
cos 2nψm

x sin ψm

− sin βx

π

∫ ∞

0

cosh 2nu

cosh(x sinh u) − cos βx
du, (76)

J s
2n−1 = −(−1)n

∑
m∈M

cos(2n − 1)ψm

x sin ψm

, (77)
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in agreement with (48), and

Ys
2n−1 = − sin βx

π

[∫ π/2

0
− sin(2n − 1)u

cos(x sin u) − cos βx
du +

∫ ∞

0

sinh(2n − 1)u

cosh(x sinh u) − cos βx
du

]
.

(78)

The computation of the Cauchy principal-value integrals can be accomplished fairly easily
by first subtracting off the singular parts of the integrand. However, by combining the results
of sections 3–5 we can dispense with the need to compute any principal-value integrals.

6. Computationally efficient expressions for S±
n , n > 0

We are now in a position to write computationally efficient expressions for S±
n , n > 0, from

which all the other series can be evaluated. Using (6), we combine the results of (46)–(49)
for J c

2n,Yc
2n,J s

2n−1,Ys
2n−1 with (53) and (57) for J c

2n−1 and J s
2n and (74) and (76) for Yc

2n−1
and Ys

2n. Note that (74) and (76) do not contain principal-value integrals, only exponentially
convergent ones. We obtain

S+
n = 2in

−1∑
m=−∞

e−inψm

x sin ψm

+ T +
n (79)

S−
n = 2(−i)n

∞∑
m=0

einψm

x sin ψm

+ T −
n , (80)

where

T ±
2n−1 = ∓λ2n−1 + iL2n−1, T ±

2n = iλ2n ∓ L2n. (81)

Here λn is defined in (44) and (45) and Ln is given, from (74) and (76), by

L2n−1 = 1

π

(
1

2n − 1
−

∫ ∞

0

(cos βx − e−x sinh u) sinh(2n − 1)u

cosh(x sinh u) − cos βx
du

)
, (82)

L2n = − sin βx

π

∫ ∞

0

cosh 2nu

cosh(x sinh u) − cos βx
du. (83)

These expressions are valid for β �= 0. Note that ψm = 0 �⇒ βm = 1 �⇒ m � 0 �⇒ S−
n

does not exist, and similarly ψm = π �⇒ S+
n does not exist. The formulae (79) and (80) (in

which the terms in the sums are O(|m|−n−1) for large |m|) are, to the best of our knowledge,
new.

When β = 0, λ2n−1 = −1/x and as β → 0, L2n → −1/x. To see this write
L2n as a contour integral along the real line and then lift the contour above the pole at
u = i(π/2 − arccos β). This shows that

L2n = − (−1)n cos 2nψ0

x sin ψ0
+ A sin βx, (84)

where A is an integral which is bounded as β → 0. It follows that in this case

S+
2n = S−

2n = 2(−1)n
∑
m�0

e2inψm

x sin ψm

+ iλ2n − 1

x
(85)

= (−1)n
∑
m∈Z

e2in sgn(m)ψm

x sin ψm

+ iλ2n, (86)
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1.23

1.235

1.24

1.245

2×105 4×105 6×105 8×105 106

Figure 1. Computed values of Re S+
1 (0.7, 0.5). The solid horizontal line represents the exact value

(1.237 46 to six s.f.) computed via (79). The dots represent the partial sums computed from (1) in
steps of 1000, up to 106.

which agrees with (42), and

S+
2n−1 = S−

2n−1 = 2i(−1)n
∑
m�0

ei(2n−1)ψm

x sin ψm

+ iL2n−1 − 1

x
(87)

= i(−1)n
∑
m∈Z

sgn(m)
ei(2n−1)sgn(m)ψm

x sin ψm

+ iL2n−1, (88)

which is new. When β = π/x, we also have S+
n = S−

n and this follows immediately from (79)
and (80), since λ2n−1 = 0, L2n = 0 (so T +

n = T −
n ) and from (14),

−1∑
m=−∞

e−inψm

x sin ψm

=
∞∑

m=1

e−in(π−ψm−1)

x sin ψm−1
= (−1)n

∞∑
m=0

einψm

x sin ψm

. (89)

Two numerical examples will suffice. In figure 1, results are shown for Re S+
1 when

x = 0.7 and β = 0.5, while in figure 2 results are shown for Im S−
2 when x = 1.7 and

β = 1.5. The solid horizontal line in each case represents the exact value, computed via (79)
and (80), these values being (to six significant figures (s.f.)) 1.237 46 and 0.639 241. The dots
represent the partial sums computed from (1) in steps of 1000, up to 106.

7. Connections with channel multipoles

In [13], solutions to the two-dimensional Helmholtz equation ∇2φ + k2φ = 0 in a strip were
constructed which are singular at the origin and which satisfy periodic boundary conditions
on the edges of a strip. These functions are useful in solving scattering problems involving
periodic arrays and they can be represented as a sum of images

φs
n =

∑
j∈Z

Hn(krj ) cos nθj eijχs (90)



Schlömilch series that arise in diffraction theory and their efficient computation 3337

2×105 4×105 6×105 8×105 106

0.635

0.64

0.645

0.65

Figure 2. Computed values of Im S−
2 (1.7, 1.5). The solid horizontal line represents the exact

value (0.639 421 to six s.f.) computed via (80). The dots represent the partial sums computed from
(1) in steps of 1000, up to 106.

and

φa
n =

∑
j∈Z

Hn(krj ) sin nθj eijχs, (91)

where s is the width of the strip, χ is an arbitrary phase factor, and (rj , θj ) are polar coordinates
centred at X = js, Y = 0. (Note that here the angles θj are measured from the line of images,
whereas in [13] they were measured from the normal to that line. In order to compare directly
with that paper we would need to replace θj by π/2 − θj .)

In order to use these functions near the origin, we expand them in terms of (r, θ):

φs
n = Hn(kr) cos nθ +

∞∑
m=0

Es
m,nJm(kr) cos mθ (92)

and

φa
n = Hn(kr) sin nθ +

∞∑
m=1

Ea
m,nJm(kr) sin mθ, (93)

and in [13] integral representations were derived for (the equivalent of) the coefficients Em,n.
The case χ = 0 was treated in [14].

We can derive expressions for Em,n in terms of Schlömilch series as follows. Graf’s
addition theorem for Bessel functions [9, 8.530] allows us to write, for r < |j |s,

Hn(krj ) cos nθj = 1

2

∑
m∈Z

Qj
nm

(
Hn−m(k|j |s) + (−1)mHn+m(k|j |s)) Jm(kr) eimθ , (94)

where

Qj
nm =

{
(−1)n+m j > 0

1 j < 0
(95)
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and

Hn(krj ) sin nθj = 1

2i

∑
m∈Z

Qj
nm

(
Hn−m(k|j |s) − (−1)mHn+m(k|j |s)) Jm(kr) eimθ . (96)

It then follows that if we make the associations β = χ/k and x = ks,

φs
n = Hn(kr) cos nθ +

∞∑
m=0

εm

2
(σn+m + (−1)mσn−m)Jm(kr) cos mθ, (97)

where ε0 = 1 and εm = 2 for m > 0, and

φa
n = Hn(kr) sin nθ +

∞∑
m=1

(σn+m − (−1)mσn−m)Jm(kr) sin mθ. (98)

Hence the coefficients Em,n can be computed using the expressions given in section 3. The
integral representations derived in section 5 can be used with (97) and (98) to derive integral
representations for Em,n which are equivalent to those given in [14] and [13].

8. Conclusion

The Schlömilch series defined in (1) are fundamental objects in the study of the diffraction of
waves by semi-infinite periodic structures, but in order to compute them quickly and accurately
alternative representations are required. In this paper we have collected together the known
results and, via the use of integral representations and other methods, derived new ones.
Equations (79) and (80) offer an efficient means of computing S±

n for n > 0 and for n = 0
we can use (36) and (37). For n = 0, we have a convergence rate of m−2 ln |m| for the terms
in the sum, whereas for n > 0 the terms decay like m−n−1, though the series can be easily
accelerated if necessary. For n > 0, we also need to evaluate an exponentially convergent
integral.
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